1. 165°

definition of measure of an arc

2.84°

Chord Arcs Conj.

3.70°

Chord Central Angles Conj.

4 8 cm

Chord Distance to Center Conj.

5.
$$\widehat{mAC} = 68^\circ$$
; $m \angle B = 34^\circ$ (Because $\triangle OBC$ is isosceles, $m \angle B = m \angle C$, $m \angle B + m \angle C = 68^\circ$, and therefore $m \angle B = 34^\circ$.)

Chord Central Angles Conj. definition of measure of an arc

6. $w = 115^{\circ}$

 $x = 115^{\circ}$

 $y = 65^{\circ}$

Chord Arcs Conjecture

7. 20 cm

Perpendicular to a Chord Conj.

8. $w = 110^{\circ}$

 $x = 48^{\circ}$

 $y = 82^{\circ}$

 $z = 120^{\circ}$

definition of an arc measure

9.96°

96°

42°

 $x=96^{\circ}$, Chord Arcs Conjecture; $y=96^{\circ}$, Chord Central Angles Conjecture; $z=42^{\circ}$, Isosceles Triangle Conjecture and Triangle Sum Conjecture.

10. $x = 66^{\circ}$

y = 48°

 $z = 66^{\circ}$

Corresponding Angles Conjecture, Isosceles Triangle Conjecture, Linear Pair Conjecture

- The length of the chord is greater than the length of the diameter.
- 12. The perpendicular bisector of the segment does not pass through the center of the circle.

Investigation 9.3 on Sketchpad
Inscribed Angle Conjecture: the measure of an angle inscribed in a circle is one-half the measure of the intercepted arc
circle is one-mail the measure of the intercepted arc
Inscribed Angles Intercepting Arcs Conjecture: inscribed angles that
intercept the same arc are congruent
Angles Inscribed in a Semicircle Conjecture: angles inscribed in a
semicircle are right angles
Cyclic Quadrilateral Conjecture: the opposite angles of a cyclic
quadrilateral are supplementary
Parallel Lines Intercepted Arcs Conjecture: parallel lines intercept
congruent arcs on a circle
<u> </u>

