1. 165°
definition of measure of an arc
2. 84°

Chord Arcs Conj.
3. 70° Chord Central Angles Conj.
4.8 cm Chord Distance to Center Conj.
5. $m \overparen{A C}=68^{\circ} ; m \angle B=34^{\circ}$ (Because $\triangle O B C$ is isosceles, $m \angle B=m \angle C, m \angle B+m \angle C=68^{\circ}$, and therefore $m \angle B=34^{\circ}$.)

Chord Central Angles Conj. definition of measure of an arc

$$
\text { 6. } \begin{aligned}
w & =115^{\circ} \\
x & =115^{\circ} \\
y & =65^{\circ}
\end{aligned}
$$

Chord Arcs Conjecture
7.20 cm

Perpendicular to a Chord Conj.
8. $\begin{aligned} & w=110^{\circ} \\ & x=48^{\circ} \\ & y=82^{\circ} \\ & z=120^{\circ} \\ & \text { definition of an arc measure }\end{aligned}$
9. 96°
96°
42°
$x=96^{\circ}$, Chord Arcs Conjecture; $y=96^{\circ}$,
Chord Central Angles Conjecture; $z=42^{\circ}$,
Isosceles Triangle Conjecture and Triangle
Sum Conjecture.
10. $x=66^{\circ}$
$y=48^{\circ}$
$z=66^{\circ}$
Corresponding Angles Conjecture, Isosceles Triangle Conjecture, Linear Pair Conjecture
11. The length of the chord is greater than the length of the diameter.
12. The perpendicular bisector of the segment does not pass through the center of the circle.

Investigation 9.3 on Sketchpad
Inscribed Angle Conjecture: the measure of an angle inscribed in a circle is one-half the measure of the intercepted arc

Inscribed Angles Intercepting Arcs Conjecture: inscribed angles that intercept the same arc are congruent

Angles Inscribed in a Semicircle Conjecture: angles inscribed in a semicircle are right angles

Cyclic Quadrilateral Conjecture: the opposite angles of a cyclic quadrilateral are supplementary

Parallel Lines Intercepted Arcs Conjecture: parallel lines intercept congruent arcs on a circle

November 19, 2019

